JOURNAL OF CATALYSIS 157, 133-144 (1995)

A Method for Accurate Quantitative XPS Analysis of Multimetallic or
Multiphase Catalysts on Support Particles

A. Frydman,*% D. G. Castner,t M. Schmal,{ and C. T. Campbell*"!

*Department of Chemistry and +Department of Chemical Engineering, University of Washington, Seartle, Washington 98195-1750; and
INUCAT/COPPE/PEQ, Universidade Federal do Rio de Janeiro, CP 68502, CEP 21945, llha do Funddo, Rio de Janeiro, Brazil

Received November 9, 1994; revised June 13, 1995; accepted July 24, 1995

A mathematical formalism for the quantitative analysis of
X-ray photoelectron spectroscopy (XPS) intensities for sup-
ported, multiphase catalysts is presented. Such powdered cata-
lysts are modeled as spherical support particles, covered in
regions (islands) by different stratified layers of phases. It spe-
cifically considers the variation in photoelectron take-off angle
over the surface of the particles, by integrating the signal over
the particle’s volume. The evaluation of this integral can be
done numerically, but for certain particle sizes it is simplified
by a new approximation to the exponential integral function
presented here, which introduces an error of <<4%. The results
show that the common assumption of normal emission usually
leads to large errors (factors of 2-5). A simpler approximation
to this new formalism, using the unweighted average take-off
angle of photoelectrons from the local surface normal of 57.3°,
introduces an error of <23% except for species whose main
intensity arises from an underlayer that is buried by another
phase of average depth greater than 1.3 A (A is a photoelectron’s
inelastic mean free path). It is useful for the initial optimization
of parameters when searching for structural models of catalysts
that are consistent with their XPS spectra. These formalisms
are also applicable in treating other shapes of catalysts than
those treated explicitly here, provided the phase’s surface-to-
volume ratio is the same as chosen in this model and that the
BET surface area is less than about 35 m’/g. More complex
expressions which treat higher surface area samples are also
presented. The formalisms can also be used in quantitative
Auger electron spectroscopy (AES), if the XPS sensitivity fac-
tors are replaced by AES sensitivity factors.
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I. INTRODUCTION

Formulae for calculating the X-ray photoelectron spec-
troscopy (XPS) signals from supported catalysts have been
presented previously in a number of papers (1-7). These
papers agree that that XPS signal from a species, i, due to
a differential volume element, dxdydz, at some depth, z,
below the surface of a particle in a powdered sample is
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proportional to the probability, p, that a photoelectron of
that species created in that volume element will escape
without loss of energy through that particle’s surface into
the direction of the XPS analyzer. Neglecting elastic scat-
tering, this probability is given by (8):

p = exp[—z/(A-cos 9)], [1]

where A is the inelastic mean free path (IMFP) of a photo-
electron from orbital j of element / and is a function of
the kinetic energy (KE) of the emitted photoelectron (8),
and @ is the photoelectron’s take-off angle into the ana-
lyzer, relative to the local surface normal of the particle.
In calculating the XPS signal, p must be multiplied by n,(z).
the atomic concentration of element / at depth z below
the local surface (in units of atoms/cm?), and this product
must be properly integrated over the surface of the parti-
cles and through the depth (1. 8).

For powdered samples, the take-off angle, 6, varies from
0° to 90° in this integral. The full evaluation of this double
integral is therefore complex, but it can in principle be
performed numerically if the exact geometric structure of
the powder is known. To overcome this difficulty, many
authors have assumed that the take-off angle is zero (2-5).
Davis (6) showed that this can lead to large errors, and
developed a model where the catalyst particles were as-
sumed to be diamond-shaped and oriented such that the
take-off angle from each diamond face was 45°. Qur pur-
poses here are to:

(1) present geometric analogues to powdered samples
which make this integration possible,

(2) determine if there exists an average take-off angle
which would be more appropriate than 45° for powdered
samples like supported catalysts, and

(3) incorporate these results into equations that would
be appropriate for accurate quantitative estimates of XPS
signals from supported bimetallic catalysts, yet for certain
particle sizes are nearly as simple as those which result
from the assumption that 8 = 0.
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To our knowledge, only Kuipers et al. (1) and Cimino
et al. (7) have previously addressed this issue of properly
integrating over the take-off angles, 8, in a powdered or
“random” sample of a supported catalyst. Kuipers et al.
(1) began with a beautiful and simple set of statements as a
starting point: “‘For true random samples every orientation
angle of a surface element in space is of equal probability.
This statement has a geometric analogue, namely that the
surface of a random sample may be represented by a hemi-
sphere.” They went on to calculate the signal ratio between
a photoelectron line for a supported catalyst material, k,
and a line for its support material, s, for a random or
powdered sample, by averaging via integration over the
whole possible range of surface orientation angles with
respect to the analyzer axis. They assumed several different
geometries for the catalyst phase, including a thin, flat
layer, spherical particles, and hemispherical particles. Un-
fortunately, they only derived mathematical formulae for
samples like monometallic supported catalysts, where the
powdered compound has only one other compound or
phase, like a metal catalyst, supported on its surface. How-
ever, their formalism can be extended easily to multimetal-
lic, multiphase, multilayered samples, as we will show here.
Cimino et al. (7) also treated only monometallic supported
catalysts. They approximately integrated the signal over
the surface of a hemisphere by summing over four concen-
tric surface regions, using the equivalent of an average
take-off angle within each region.

We are interested in multimetallic catalysts that might
have layered overlayer phases or layered particles sup-
ported on the surface of a powdered oxide or other pow-
dered material. For example, supported CuRu bimetallic
catalysts might have surface-segregated Cu on top of Ru
in the supported metal particle sitting on an oxide support.
Therefore we require a more general formalism, which we
present here. It is, mathematically, an extension of the
“randomly oriented layer” model of Kuipers et al. (1),
except that it explicitly considers multilayered supported
catalysts, and it has as its basis a different physical picture.
The formulae in both models are most accurately solved
by full numerical integration. To make this integration
simpler, we also present approximate analytical expres-
sions for the exponential integral function. In addition, we
show that the “randomly oriented layer” formalism of
Kuipers ef al. (1), upon which our formalism is based,
incorporates a certain unstated assumption which leads to
large inaccuracies when the support particles are small or
even for large particles if the overlayer phase is thick. We
will estimate the magnitude of this error and present a
formula here which corrects that error. Finally, we present
here a far simpler but more approximate method that has
sufficient accuracy for some applications, especially for
making first estimates of parameters in structural models
of catalysts that match their XPS spectra.

FRYDMAN ET AL.

We will model the catalyst here as being supported on
spherical particles, and the active overlayer phases as a
sequence of stratified layers, each of uniform thickness,
covering certain fractions of these spheres in a certain
stacking order. The resulting formalisms should be more
generally applicable than this stratified, partial spherical
shell model implies because, as beautifully shown by Kuip-
ers et al. (1): “For truly random samples, the XPS signal
of a supported phase which is present as equally sized but
arbitrarily shaped convex particles is determined by their
surface to volume ratio.” Thus, any catalyst particle or
supported island shapes that have the same total surface
area to volume ratios and the same total volume as chosen
in this model should give similar XPS signals.

I1. THE MODELS
111. Flat Samples

We start with the traditional equation for flat samples
that describes the photoelectron intensity due to the inte-
grated depth distribution of the element, weighted by the
exponential decay of the escape probability of emitted
photoelectrons with sampling depth (Eq. [1]) (8-10). The
integrated XPS intensity from the analysis area A of a flat
sample for orbital j of element 7 is given by

I;=Ly(y) 0;KTxe A [

ni(z) exp[—z/(A-cos 8)] dz,

(2]

where

L;(y) is the angular asymmetry factor of orbital j of
element i;

oy is the photoionization cross section of orbital j of
element i, taken from (11);

K is an instrumental constant which depends on the
intensity and incident angle of the X-ray source;

Txe is the transmission probability of the XPS analyzer
which is a smooth function of the kinetic energy (KE) of
the emitted photoelectron and which can depend on the
geometry and pass energy of the analyzer, but for a given
geometry and KE, it is assumed here to be a constant
within the analysis area and zero elsewhere;

n«(z) is the atomic concentration of element i at depth
z below the local surface (in units of atoms/cm?);

A is the inelastic mean free path of a photoelectron from
orbital j of element i which is a function of the kinetic
energy of the emitted photoelectron, and may depend on
the material, taken from Tanuma et al. (12); and

# is the photoelectron polar take-off angle relative to
the local surface normal.

With this set of definitions, the product K - Tgg - A will
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normal to packed
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FIG. 1. Schematic representation of a powdered sample as a set of
equally sized spheres. The set of volumes which constitute the topmost
layer of spheres is shown in black, and the second layer volume is shown
as shaded areas. Since the volumes in each layer are randomly chosen,
each layer sums up to a complete set of spheres.

grow as 1/cos fin the case of a large-spot X-ray source and
a large sample, because the analysis area A will increase in
this way. It will not vary with 6 for X-ray spots or samples
that are smaller than A. The angular asymmetry factor is
unity for all elements in spectrometers which operate at a
“magic angle,” which is 54.7° between the X-ray and de-
tected electron vectors when elastic electron scattering is
neglected (16). When elastic electron scattering is included,
the magic angle is somewhat larger (~63°) (16). As our
spectrometer operates near this latter angle, we will treat
this factor as unity here, although it can be easily included
in the final equations we shall derive.

I1.2. Powdered Samples: Spherical or Random Model

We consider next powders or random samples, which
will be modeled here as a randomly located array of equally
sized spheres, as shown in Fig. 1. The effective radius of
the spheres can be estimated by equating their BET surface
area per unit mass to that of the real catalyst. The XPS
signal from such an array will accurately represent the
signal from a real powdered catalyst of the same surface-
to-volume ratio only if the radii of curvature presented in
the real catalyst are not too different from this value (i.e.,
only if the particle size distribution is not too broad). We
choose spherical particles since a spherical surface accu-
rately represents the distribution of angles between the
surface normal and the axis of the detector of a randomly
oriented powder of arbitrary shape, as shown by Kuipers
et al. (1). This is true since this probability distribution is
constant (independent of angle) in both cases. Also, Kuip-
ers et al. (1) showed for a variety of regularly shaped,
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equally sized, but randomly oriented convex particles (rect-
angles, hemispheres, and spheres) that the XPS signal from
a fixed volume is a function of the surface-to-volume ratio,
but independent of shape. Thus, one could reasonably ex-
pect that the signal from a single spherical particle could
accurately represent that from part of a powdered sample
carefully chosen to have the same volume and the same
surface-to-volume ratio as the sphere. One should be able
to keep choosing parts of the powder that match single
spheres, until the whole powder has been modeled by this
array of fixed diameter spheres. Again, this probably fails
for powders made up of particles with a very broad distri-
bution of sizes or surface curvatures.

First, we treat only spheres whose effective diameter
is much larger than the escape depth of photoelectrons
(typically 0.5-4 nm), so the attenuation of photoelectrons
originating from one “sphere’ by other ‘“spheres’ was
considered to be complete. That is, the observed photo-
electrons were assumed to arise from spheres on the very
surface of the powder as mounted. While some spheres
will be completely “seen” by a detector at large distance,
other spheres in this array will be partially “masked” by
other spheres that sit between it and the detector. How-
ever, since the packing is random, the probability that any
given part of any given sphere be seen by the detector is
equal. Since the parts of the spheres that are seen are
randomly chosen, they sum together to make a complete
set of spheres, as shown in Fig. 1. Thus, only one full and
unmasked sphere needs to be considered to obtain the
proper distribution of take-off angles. In effect, this means
that the XPS intensities could be modeled by considering
the photoelectron emission from a single, isolated sphere
of a typical effective diameter into an analyzer at infinite
distance. The curvature of the particle surfaces is not ex-
plicitly taken into consideration in any other way except
by considering the variation in the take-off angle over the
particle’s surface. In this case, the XPS intensity in Eq. [2]
above must be integrated over the volume of a spherical
particle. Here, we will also assume that the particle is so
big that no electrons can get to the spectrometer if they
originate from the back surface of the particle. (Using
typical densities and A values, this means that the BET
surface area must be less than about 35 m?/g.) Thus, this
integral must be performed only over the front half of the
sphere. The intensity from one such outer hemisphere of
radius, R, within the analysis area is just

Iy = KTxg Lij(’)’) 4] I:O J:/:zo J.iio

(3]
ni(r) exp[—(R — r)/(A - cos 8)] sin 8dr ddé,

where r is the radius from the center of the particle, 8 is
the polar angle measured from the direction to the ana-
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lyzer, and ¢ is the azimuthal angle. The integral over ¢
just gives 2. We consider first only particles whose radius,
R, is much, much larger than A, so that the integral really
need only be performed over a film of thickness equal to
about 5A on the surface of the particle. In this case, the
integral can be replaced with

5 [ 72
1,‘]' = KTKE L,I('}’) O 27 R* fz:() J'ﬂz()

n{z) exp[—z/(A-cos 6)] sin 8dz db,

[4]

where z = R — r is the depth below the local surface of
the particle. For simplicity, we let its upper limit go to
infinity rather than just to 5A, since the contribution to the
integral between these limits is negligible (<1%).

11.3. Stratified Layers or Spherical Shells

Fitting data from flat samples with Eq. [2] is difficult,
because there are an infinite number of functions n,(z) that
might describe the depth distribution of an element i. To
simplify this situation, one normally assumes stratified lay-
ers of known phases. That is, different phases, each with
a specific thickness, are encountered as one looks deeper
and deeper into the catalyst surface, but, within each phase,
the concentration of element i is either zero or a constant
characteristic of that phase. For a spherical particle instead
of a flat sample, this is equivalent to assuming that it is
made up of different phases, each of which is a concentric
spherical shell.

When #,(z) assumes a constant value of N; within some
layer from z, to z,, as suggested by this ‘“‘spherical shell”
model, then Eq. [4] reduces to

5 2 7/2
I, = KTy Ly(y) 0,27 N, | :. "

5
exp[—z/(A-cos 8)] sin 6d8dz. .
Integrating over z gives
Iy = KTxe Ly(y) 0 20R N; A { -
exp|[—z:1/(A - cos 8)] sin fcos 6 d0 [6]

- f:izn exp[—z2/(A - cos 0)] sin O cos OdG}.

To simplify evaluation of these integrals, we define the
function E; of x as

Ei(x) = f’:} exp[—x/cos 6} sin 6 cos 8 d6. 7]
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FIG. 2. Relative errors between different approximate expressions
for the exponential integral function: Eq. [9] or Kuipers™ approximate
expression (1), open symbols; Eq. [10], filled symbols. When approximat-
ing the exponential integral function. one should use Eq. [9] when x <
0.87. and Eq. [10] for all larger x.

This function, E;(x), is equal to the well-known and tabu-
lated (13) exponential integral function (1). With it, Eq.
[6] simplifies to

Iij = KTKE L,,(‘}’) T 27TR2 N,' “A- [E_}(Zl/A) - Ez(Zz/A)]
(8)

Thus, calculating the angularly integrated signal from a
layered phase near the surface of a sphere simply involves
two evaluations of this function E;.

The earlier paper on angle integration in XPS by Kuipers
et al. (1) stated that £3(x) is reasonably approximated by

E5(x) = 3 exp[—x}/{2-exp[—x]}. (91

We found that this approximation is acceptable only for
x < 1. Its error grows rapidly with x for x > 1, reaching
>20% by x = 2, and >90% already by x = 5. We have
found a much better approximation for this integral when
x > (.87, given by

Ei(x) = {3 exp[—x]/{2-exp[—x]}} - {1.15 exp[—0.16x]}.
(10]

The relative errors in these two approximations to the
function E; are shown in Fig. 2, where the true value was
taken from tables (13). As can be seen, if one uses Eq. {9]
for x = 0.87 but Eq. [10] for x > 0.87, then the error will
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always be quite acceptable (less than 4%) within the range
of values of interest in evaluating Eqgs. [S] or [8}: x =
z/A < 6. (The contribution to the XPS signal, or the value
of E;, is negligible deeper than this, so large percentage
errors can be tolerated.) We recommend this combination
of Eqgs. [9] and [10], if numerical integration cannot be per-
formed.

When possible, it is always advisable to do the full nu-
merical integral. Approximations like this one for £; (i.e.,
using Eq. [9] for x < 0.87, but Eq. [10] for x > 0.87) are,
however, useful time-saving devices. Short of doing the full
numerical integration in solving Eq. [8] or any of Kuipers’
equations for quantitative XPS (1), this new approximation
should be used. It gives significantly improved accuracy
compared to Eq. [9] alone when an overlayer is thicker than
1A and covers more than a small fraction of the surface, or
when a phase is buried by more than 1A.

In more complex samples, element / may exist in more
than one of the layers or spherical shells. In this case, one
must take a sum of terms like that calculated in Eq. [8]
for each shell where its concentration is nonzero.

11.4. The Average Take-Off Angle for Photoelectrons
from Spherical Surfaces

We next show that Eq. [4] can be replaced by the simpler
Eq. [2], provided a proper average polar take-off angle,
8,..can be found. For this to be true, the following equality
must hold:

A’ J’: ni{(z) exp[—z/(A-cos 6,,)] dz

R [11]
=27R? j_;() f::)n,(z) exp[—z/(X - cos 0)] sin 8dz d6.

The analyzed area A’ is just 2rR? for this hemisphere.
One must sum the signals from all hemispheres within the
entire analysis area A to get the whole XPS signal. If n,(z)
is known, Eq. [11] can then be solved for 6,,. It is clear
that its value will depend on the exact form of n,(z). If the
element is concentrated near the surface, the average take-
off angle will be large; while if the element is deeply buried
below the surface, it will only be seen for near normal
emission. We have calculated 6,, with this equation, assum-
ing that n,(z) is a constant in a concentric spherical shell
between depth z, and z,, and zero elsewhere. In this case,
Eq. [8] can be used to evaluate Eq. [4]. The resulting
average take-off angles are shown in Fig. 3 as a function
of the average value of z/A in the spherical shell, for various
spherical shell thicknesses. As can be seen, the average
photoemission angle assumes values from 90° to ~45°. The
value of 45° assumed by Davis (6) is only accurate for
deeply buried layers.

The reader should remember that the real surface area

137

90
b z = 0 (surface) O very small Az
¢ fromQOtot
B Az=1A
T Az=2A
Y
U
S
=
P ®
. .
" g
- q
40 [T VSN NN AU N S ST SAD U AN N SANE S A SR
0 1 2 3 4 5 6
average z/A
FIG. 3. Properly weighted average take-off angle of photoelectrons,

relative to the local surface normal, from a spherical shell on the surface
of a spherical particle, for various shell thicknesses, Az. It is plotted here
as a function of the average shell depth, z, relative to the inelastic mean
free path of the electron, A. (See inset for geometric explanation of z
and Az, where the shell of interest is shown as the shaded volume.) The
filled egg-shaped symbols are for a shell which starts at the surface and
extends a thickness ¢ into the sample, such that the average z/A is simply
+/2. By definition, application of this angle in Eq. [2] for a slab model
leads to the exact same results as Eq. {8] for such spherical shells.

seen by the XPS spectrometer is about twice as large for
a powdered sample made up of large spherical particles
as for a truly flat sample, provided that the spheres are
packed thickly, such that gaps between spheres are filled
by spheres below. This is because the analyzed area, A’,
of a sphere is 2R ?, but this sphere only occupies a planar
area 7R? across the analysis region, A. Thus, the inherent
XPS signal from a powdered sample will be twice as large
as that from a flat sample with the same depth distribution
of elements, except for possible changes in intensity due
to differences in the average take-off angles between the
two types of samples, as quantified above.

The geometrically averaged take-off angle from the front
surface of a sphere into a detector at infinite distance,
unweighted by escape probabilities, is 57.3°. (We calculated
this by integrating 6 over this surface, and dividing by its
area.) It turns out that using this single value in Eq. [2]
gives a reasonable approximation to Egs. [4] or [8] for a
large range of layered structures on spherical surfaces.
This can be seen in Fig. 4, where the relative error in this
approximation, compared to the result from Eq. [8], is
plotted for the same layered structures as were treated in
Fig. 3. The relative error is always less than ~23% except
for those layers which are buried by other material whose
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FIG. 4. This plot demonstrates the errors that result from a simple
model where a single average take-off angle of 57.3° is used with Eq. [2]
for modeling the XPS signal from spherical shells on spherical particles.
The ratio of the intensity calculated with this method, 7(8,, = 57.3°), to
that calculated using the full double integral via Eq. [8], /(true), is plotted
as a function of the average shell depth, z, relative to the inelastic mean
free path of the electron, A, for various spherical shell thicknesses. (See
Fig. 3 for definitions of z, Az and ¢.)

thickness is bigger than about 1.3 A. In real supported cata-
lysts, the main contribution to the XPS signal from any
one element is frequently not due to such deeply buried
layers, so the use of 57.3° is often quite reasonable. While
it is true that the support material is often covered in
patches by layers of the active catalyst that are thicker
than 1.3 A, the fraction of the support that is covered by
these patches is often small. While 23% is an unacceptable
error in many applications, it is acceptable in others. Such
quick but very approximate methods are, for example,
quite useful in the preliminary optimization of structural
parameters in structural models for catalysts that match
their XPS spectra, as we have shown elsewhere (14).

Frequently, powdered samples are analyzed with models
where the average take-off angle is assumed to be normal
to the local surface, or 0° (2-5). It is useful to see how this
compares to the methods we describe above. Figure 5
shows the same type plot as Fig. 4, only here 6,, = 0° was
used. Thus, the error in the calculated intensity using this
approximation, relative to full angular integration, is plot-
ted for the same series of layered structures (spherical
shells) as modeled in Fig. 4. As can be seen, the error in
assuming 0° is always very large (>50%) whenever the
average depth of the layer is greater than A/2. This approxi-
mation generally does much worse than the 57.3° approxi-
mation.

FRYDMAN ET AL.

One can see from Fig. 3 that 57.3° more closely approxi-
mates the true average angle than does Davis’ model, which
assumes f,, = 45° (6), except in cases with deeply buried
layers. For such layers, which are rare in real catalysts, 45°
is better. These comparisons highlight the importance of
the present full integration methods, and the value of the
approximate method using 57.3°.

Using 8,, = 57.3°, or preferably taking 6,, from Fig. 2,
allows one to use Eq. [2] instead of the more complex Eq.
[4] or [8] in calculating XPS signals for powdered samples
provided element / has a depth distribution that can be
represented by a constant-concentration spherical shell.
One can also apply this method to any concentration pro-
file, provided one applies it shellwise, choosing spherical
shell widths, Az, small enough so that this condition holds
within each shell and then summing signals from the shells.
Alternatively, one could also apply Eq. [8] shellwise. Both
Eqgs. [8] and [2] using 6,, from Fig. 2 are very accurate
(<3%). The possible errors in the 57.3° approximation (Fig.
4) should be remembered when it is used. This approxima-
tion should not be used for deeply buried layers.

11.5. Layered Support Particles: The Partial, Stratified
Spherical Shell Model

In real catalysts, different depth distributions of the ele-
ments, n,(z), exist on different regions of the support parti-
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FIG. 5. This plot demonstrates the errors that result from a common
model where a single average take-off angle of 0° is used with Eq. [2]
for modeling the XPS signal from surface layers on spherical particles.
The ratio of the intensity calculated with this method, /(6,, = 0°), to that
calculated using the full double integral or Eq. [8], I(true), is plotted as
a function of the average shell depth, z, relative to the inelastic mean
free path of the electron, A, for various spherical shell thicknesses. (See
Fig. 3 for definitions of z, Az and 1.)
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Nb,Og support

Co*? surface phase

C0304

Rh,0,

FIG. 6. Schematic representation of a typical catalyst structure that
is based on the partial, stratified spherical shell model. This actually is
the preferred structural model for a series of calcined Co-Rh/Nb,Os
catalysts we have studied elsewhere (14). This model has bilayer islands
of Rh;O; on Co10, covering a fraction f of the niobia support surface,
with Rh,O; on top, and a highly dispersed Co*? phase covering all regions
in between these islands.

cle’s surface. For example, in supported monometallic cata-
lysts the metals may exist as islands or supported particles
on the support, where some regions of the support are
covered by metal and others are not. Kuipers et al. (1)
have treated these supported monometallic catalysts with
a mathematical model equivalent to treating the metal
phase as a partial spherical shell of uniform thickness which
covers only a fraction of the surface of the inner, concentric
support sphere. We extend their model here to include
multiphase supported particles. We treat these as partial,
stratified spherical shells over a spherical support particle.
An example of such a model is shown schematically in Fig.
6. It turns out that this structure accurately represents a
real calcined Co-Rh bimetallic catalyst on a niobia support
which we have analyzed elsewhere using the equations
presented here (14).

In evaluating the total XPS signal from such a complex
sample using the above equations, a sum of terms must be
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taken for every region, k, of the sphere that has a different
depth distribution. Thus, to calculate the total XPS inten-
sity for level j of element i originating from one sphere, a
sum of terms /;(k) is taken, using Eq. [8] or Eq. [2] (with
the proper 6,,) to evaluate each /;(k):

I,(sphere) = }kj Fi- (k). [12]

Here, f, is the fraction of the support particle’s surface
covered by region k, and 2, f, = 1.0. Within each region
k, the depth variable z starts at zero from the local surface
of the topmost layer when evaluating /;(k). This equation
assumes that the supported “‘particles” (or stratified, par-
tial spherical shells) have a dimension parallel to the sup-
port surface that is large compared to the stratified layer
thickness. We will argue below that this restriction is not
actually necessary in applying this equation with accuracy,
provided that the real supported islands have a uniform
size distribution and that the model used for them based
on these equations has the same total surface-to-volume
ratio as the real particles.

Simple geometric formulae relate the thicknesses of
phases, their densities, and the surface fractions covered
by these phases with the total amounts of each element
present in the catalyst. These mass balances bring im-
portant additional equations to the problem which must
be satisfied, in addition to the XPS intensity equations, for
any accurate structural model of the catalyst to truly fit
the data. Examples of the use of such mass balances are
presented in Ref. (14) for supported bimetallic catalysts
where the active metals (Rh and Co) exist in three separate
phases on niobia support particles.

11.6. Powdered Samples with Higher Surface Area

When a powdered sample has a very high surface area
(>35 m?/g), the effective radius of its spheres become
comparable to A, and several of the assumptions in the
above derivations can lead to substantial errors. We first
treat spheres that are still large enough that electrons from
an underlying sphere have insignificant probability of pass-
ing through the overlying sphere. Even here, Eqs. [3] and
[4] have approximations that fail when the radius of curva-
ture is comparable to A. First, the distance that a photoelec-
tron originating at point (r, 6, ¢) must travel through the
solid is not simply {(R — r)/cos 6} as implied by Eq. [3],
but is really {V(R? — r*sin°8) — r cos 8}. Also, r? is not
exactly R?, as implied by Eq. [4]. Note, however, that these
both become good approximations when (R — r)/R < 1,
which is the only region of interest when R > A. Fortu-
nately, these two approximations give errors with opposite
signs on /;;, so they cancel to some extent. To evaluate the
magnitude of these errors, we have performed numerical
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FIG. 7. A comparison of the XPS intensities calculated using Eq.
[8] and the more accurate Eq. [13], for a very thin spherical shell of fixed
concentration of element i within a concentric spherical particle, as a
function of the shell’s depth below the particle’s surface, z = R — r. The
comparison is presented for various particle radii. R, relative to the
photoelectron’s IMFP, A.

integrations of the correct equivalent of Eq. [3], for com-
parison to the result from Eq. [4]. The correct equivalent
to Eq. [3] is

R w
I,‘j = KT(KE) L,j(y)a,-j . 277 Jr:(] jﬂ:() l'l,'(l")

exp[—{V(R? — r*sin®6) — r cos 6}/A]r sin O dr d#,
(13]

Here, {(R — r)/ cos 6} has been replaced with the accurate
expression given above, and the limit on the # integral has
been increased from /2 to 7, so that the whole sphere,
and not just the top hemisphere, is included. Again, the
integral was performed numerically for a sperical shell of
thickness Az (or Ar) at average depth z (or R — r) below the
sphere’s surface where there is a constant concentration, N,
(and zero concentration elsewhere). This is exactly what
was done in Figs. 2-4, except here we use Eq. [13] instead
of Eq. [4] or its equivalent for this geometry, Eq. {8]. Only
very thin shells were studied, exactly like those in the open
oval symbols of Figs. 2—4. The results are shown in Fig. 7,
where the ratio of the XPS intensity calculated using Eq.
[8] to the intensity using Eq. [13] is plotted as a function
of z/A, for several ratios of R/A. As can be seen, Eq. [8]
is fairly accurate when R = 104, except for deeply buried
layers. However, Eqs. [8] and [4] are rather inaccurate
whenever R = 5A, unless the layer is not deeply buried.
When Eq. [8] fails, it gives intensities that are too high
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due to the fact that R? is larger than 2, and not equal as
was assumed.

Thus, the formalisms in Sections 11.2—I1.5 are acceptable
for effective spheres of radius greater than about 25 nm,
for a typical A of 2.5 nm. Using a typical oxide density of
3.5 g/cm?, this corresponds to powders with specific surface
areas below ~35 m?%/g. Equation [13] should be used for
powders between ~35 and 100 m?/g. Note that this equa-
tion can be applied to spherical shells of constant concen-
tration to simplify the integral, and these terms can be
summed via Eq. [12] to accurately treat partial spherical
shells in this size regime. When the area exceeds ~350
m>/g, most samples can be considered homogeneous in
concentration, in which case the equations are trivial (8,
10). (If one element is tightly concentrated near the center
of the spheres, the homogenous model is appropriate only
for areas greater than ~700 m?/g.)

For areas between ~100 and ~350-700 m?/g, a formal-
ism which explicitly considers the incomplete attenuation
of electrons from one sphere by overlying spheres should
be employed. Formalisms which consider this were pre-
viously presented by Kerkhoff and Moulijn (2) and by
Kuipers et al. (1). The Kerkhoff formalism assumes normal
emission, which can be grossly inaccurate as shown above.
The model of Kuipers et al. properly averages over all
emission angles. It explicitly considers only two-phase sam-
ples, but could be easily extended to multilayered samples.
(Indeed, Eq. [8] above would be the central formula in
such an extension.) However, Kuipers’ formalism has a
certain unstated assumption which leads to inaccuracy even
in two-phase systems, as we will show below. This error
arises from the fact that an equation equivalent to Eq. [8]
is used in Kuipers's formulae, whereas Eq. [13] is more
accurate for small particles for the reasons outlined above.

Itis simple to correct Eq. [13] for the incomplete attenua-
tion of electrons from one sphere by overlying spheres.
We will treat the first layer of spheres at the surface exactly,
using Eq. [13]. All underlying spheres will also be treated
with this same equation to calculate the intensity /; emitted
from that sphere toward the analyzer, only now this inten-
sity will be attenuated by the overlying spheres. The first
effective layer of spheres includes all parts of all particles
which can emit electrons directly into the analyzer without
passing through any other spheres (see black regions in
Fig. 1). The second layer of spheres includes all parts of
spheres which emit electrons directly into the analyzer
while passing through only one other sphere (see shaded
regions in Fig. 1). Each effective sphere in any layer occu-
pies a planar area of TR?/c0S Oyacro across the analyzed
area A, where 60, is the angle between the analyzer axis
and the normal to the macroscopic surface of the packed
powder of spheres. Thus each effective layer of spheres
includes a total number of spheres equal to A/(mR?/cos
Omacro) Within the analyzed area. Each sphere within the
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first layer of spheres gives an intensity equal to that from
Eq. [13], unattenuated by other spheres. The total intensity
from the first layer is just this intensity times the number
of spheres in this layer:

L tayer 1 = [A €08 Baceo/ (TR?)] - |15, from Eq. [13]].  [14]
Each sphere within the second effective layer of spheres
gives an intensity equal to that from Eq. [13], but now
attenuated by a sphere of the first layer. An electron leav-
ing a sphere in the second layer must pass through some
length of solid in a sphere of the first layer. We will assume
random packing of spheres, so that this electron has equal
probability of passing through any part of the overlying
sphere. In an unrelated derivation, Kuipers et al. (1) have
shown that the intensity in such situations is reduced by
the factor

QQRIA) = 2(A2RY[1 — (2R/A + 1) -exp(—2R/N)],
(15]

which they call the ‘““attenuation function for spheres.”
This is the escape probability of electrons through a sphere,
assuming they are emitted randomly from the area directly
below the sphere.

The signal /;;from the third layer of spheres is attenuated
by the square of this attenuation factor, (}(2R/A)?, and so
forth. The net signal from all spheres is just the sum over
all layers of the intensity from the spheres within that layer,

Iij.TOT = [A Cos t9macro/(ﬂ'Rz)] ' [Iij.from Eq.[]3]]

: [2 Q(2R/A)"], [16]

n=0}

where n is an integer. Note that the summation here re-
duces to 1/[1 — Q(2R/A)], since (2R/A) is always less
than one. Thus, Eq. [16] simplifies to

[ij,TOT = [A cos Bmacm/(nRz)] : [Il'j,from Eq. [13]] [17]
+[1 = QQ2R/N)].

We now show that Eq. [17] reduces to the proper limits
whenever R > A or R € A. When R > A, the signal all
comes from the first layer and is simply given by Eq. [14],
which is correct. When R < A, the exponential attenuation
factor in Eq. [13] is unity, and therefore Eq. [13] is simple
to evaluate by

1,-1- = KT(KE)L,‘j('}’)U,’j(47TR3/3)N,', [18]
where N, is the average concentration of element i within

a sphere’s volume. Furthermore, the summation in Eq.
[16] reduces to 3A/(4R) when R < A. (The reader that tries
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to verify this limit should be careful to take enough terms,
out to third order, in the series expansion for exp(—2R/
A) in calculating the limit of (2R/A).) Thus, the total
intensity is just

Iij.TOT = [A * oS Bmacm/(WRz)] [19]
’ [KT(KE)Lij(')’)a'ij(477R3/3)Ni] [3A/(4R)).

This simplifies to

Litor = KTikepyA - Lij(y)oiNiA - €0S Onucro-  [20]
This is the standard result for homogeneous samples (8,
10), which can be easily obtained from Eq. [2]. (If a sample
is porous, as in a powder, the values on N; and A in Eq.
[2] must be decreased and increased, respectively, by a
factor equal to the volume fraction of solid, or one minus
its pore fraction, and these factors cancel.) Note that
K- Tkg) - A will change as 1/cos 6p,c, for large-spot X-
rays, as we noted just after presenting Eq. [2] above.

Thus, Eq. [17] is the true master equation, and it can be
used for samples of any BET surface area.

In real catalysts, different depth distributions of the ele-
ments, n;(z), exist on different regions of the support parti-
cle’s surface, as was mentioned in Section I1.5. Of course
to model such catalysts using Eq. [17], it must use a value
for I;; from Eq. [13] which properly accounts for each
different depth distribution. To do this, results from Eq.
[13] for the different regions may be combined in a summa-
tion identical to that in Eq. [12] of Section IL5.

ITI. DISCUSSION

To test our formalisms, we have compared the XPS
intensities calculated using them with the results from
Kuipers’ formalism (1). This was done for several examples
of supported monometallic catalysts, which is the most
complex class of samples that can be handled by the formal-
ism of Kuipers et al. (1) without further derivation. In these
model systems, the support was assumed to be spherical
particles of constant support element concentration, Ny,
whose diameters were much larger than any electron in-
elastic mean free path. The active metal phase was assumed
to be randomly spread as islands of constant thickness, ¢,
and constant metal concentration, N, over a fraction, f,
of the support surface. The surface otherwise was assumed
to be clean. This model for monometallic catalysts is ex-
pressed by the combination of Eqs. [8] and [12]. Together,
these give exactly the same formula for the XPS intensity
ratio of the metal to a support element in such monometal-
lic catalysts as in Kuipers' “‘randomly oriented layer
model” (Eq. [7] from Ref. (1)), although the physical de-
scription of that model is quite different from ours. Indeed,
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we found that the resulting metal:substrate XPS ratios
from our full integration method, Eq. [8] with z; = 0 and
Z; = t, were within computer error (<1%) of the results
applying numerical integration to Kuipers’ equations for
the whole range of ¢ values when f was less than 10%.
This is the situation in many supported catalysts. However,
evaluating these integrals using Kuipers’ approximate
method for evaluating E5 gives large errors (18-100%)
whenever ¢ is larger than 2A and f is close to unity. These
differences are only due to the inaccuracies in the evalua-
tion of E3(x) using Kuipers’ approximate method, or using
Eq. [9] instead of Eq. [10] for x > 0.87. This situation
occurs because the percentage errors in E3(t/A) are large
using Eq. [9] whenever ¢/A exceeds 2, as was shown in Fig. 2.

Because Eq. [2] is equivalent to Eq. [8] when the true
average angle from Fig. 3 is used, no further specific com-
parison of this second method with Kuipers’ equation will
be given here. The use of Eq. [2] with 6,, = 57.3° gave
XPS ratios with small errors relative to using Kuipers’
equation (with numerical integration). These errors were
very close in magnitude to those plotted as egg-shaped
symbols in Fig. 4, provided f was very small (<10%). When
f and r were both large, this method was in serious error
because the substrate was mainly buried. Thus, its signal
incorporates the large errors shown by the open squares
in Fig. 4, which arise for buried layers.

As stated above, Eqgs. [8] and [12] above give the same
mathematical formula for monometallic catalysts as the
randomly oriented layer model of Kuipers et al. (1). Thus,
the inaccuracies of Eq. [8] (or Eq. [4]) that occur for higher
surface area powders, discussed in Section I1.6 above, must
also occur with the formulae of Kuipers et al., although
they do not point this out. For example, when the radius
of curvature of the support particles becomes comparable
to A, there are errors in the method of calculating the
distance photoelectrons must travel through the solid in
both these models. There are other error factors as well,
as discussed in Section 11.6, where a more accurate formal-
ism for such samples was presented.

It should be noted that we could have derived the equiva-
lent of Egs. [8] and [12] for multilayered, multimetallic
catalysts following the derivation of the randomly oriented
layer model of Kuipers et al. (1). However, we have chosen
not to because that model presents a rather different physi-
cal picture of the catalyst than envisioned in our partial,
stratified spherical shell model. Also, while the formulae
resulting from these two models are the same when the
particle radius is large compared to A (i.e., for low-surface-
area samples), they do differ markedly for high-surface-
area samples, as we will show below.

Equation [17] above is the proper formula to apply for
high-surface-area samples. Kuipers et al. (1) treated high-
surface-area monometallic catalyst as well within their ran-
domly oriented layers model, assuming a catalyst com-
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FIG.8. A comparison of the XPS intensity ratio of catalyst to support,
I/1, calculated with Eq. [22] from Kuipers et al. (1) and that calculated
with our Eq. [17]. Here, ¢, is the catalyst phase’s shell thickness, R is the
whole spherical particle’s radius (support plus catalyst), and A, and A,
refer to the inelastic mean free paths for the support and catalyst ele-
ments, respectively.

posed of a parallel array of support sheets, each of thick-
ness t,. The sample is composed of many such arrays of
parallel sheets, and each array is randomly oriented with
respect to the analyzer axis. Figure 8 compares the results
of this formalism with our Eq. [17] for the case where
fx = 1.0, for a range of sample types and particle sizes.
Here, the catalyst phase’s shell thickness is called t;, and
the whole spherical particle’s radius (support plus catalyst)
is called R. In order to compare such physically different
models, one must use a support layer thickness in Kuipers’
model which is 2/3 the radius of our spherical support
particles, r,, as was pointed out by Kuipers er al. (1)
ty = (2/3) - r,. [21]
This ensures that the support has the same surface:volume
ratio in both models. Note that R = r, + 1;, by definition.
One must also ensure that the support and catalyst phases
are present in the same volume ratio in both models. To
do this, one must force the catalyst’s phase thickness in
Kuipers’ model, 7, to be equal to
te = (r3)-[(1 + 0/r) — 1. [22]
(This correction highlights a certain difficulty associated
with realizing the physical picture that underlies Kuipers’
model. Thus, while the physical meaning of our ¢; is obvi-



METHOD FOR XPS ANALYSIS OF MULTIPHASE CATALYSTS

ous, that of £, is not so clear.) Using these relations, Fig.
8 compares the XPS intensity ratio of catalyst to support,
I/1,, for two ratios of mean free paths: one where the
support and catalyst phases have the same value (or A, =
A;), and another where the value for the support is one-
half that for the catalyst element (or A, = A,/2). The product
Txg)Lj(y)o; was assumed to be the same for both ele-
ments and their elemental densities, n,, within their respec-
tive phases were assumed to be the same. (These factors
would cancel in comparing models anyway.) We used Eq.
[22] from Kuipers et al. (1) in the calculation of Kuipers’
model.

As can be seen in Fig. 8, Kuipers” model gives an XPS
intensity ratio of catalyst to support, /;/{;, which is gener-
ally larger than that given by Eq. [17]. However, it works
with high accuracy when the catalyst phase thickness is
tiny, or when it is small compared to the particle radius R
while R is larger than ~10A. It is in serious error when
either the catalyst phase has a thickness comparable to A
while R is less than ~7A or the catalyst phase thickness is
a substantial fraction of R (=20%) while R is greater than
about ~5A. These errors in Kuipers’ model occur because
a certain assumption implicit in that model breaks down
under these conditions. The origin of both these errors lies
in the fact that, in the Kuipers model, the support is always
treated as flat sheets, so that the escape path of a photoelec-
tron through the solid from depth z below the surface is
always {z/cos 6}, and not some smaller distance that takes
into proper account the finite radius of curvature of the
support. When their formulae are applied to spherical par-
ticles, they imply that a photoelectron originating at a point
(r, 6, ¢) within a sphere must travel through the solid
particle a distance equal to {(R — r)/cos 6} before exiting
the particle toward the analyzer, as also implied by our
Eqs. [3] and [8]. As we argued in Section IL.6 above, how-
ever, this distance is really only {V(R?— r’sin’8) — r
cos 6}, as was incorporated in Egs. [13] and [17]. This error
is reflected in both Figs. 6 and 8. Note that the difference
between t; and ¢, used above in applying Kuipers’ equations
to our structural model approximately corrects for the fact
that r? in the region of interest is not exactly R?, which is
another assumption implicit in Eqgs. [8] and [4], and re-
flected as error in Fig. 6. Thus, this part of the error in
Fig. 6 does not appear in Fig. 8.

The errors in Kuipers’ Eq. [22] are maximized in Fig. 8
because only full coverage (6, = 1.0) was treated there.
At smaller 6,, the errors will be smaller. When 8, is tiny,
it is quite a good approximation even for a small R and a
thick catalyst phase, since most of the support remains
unburied (see the discussion regarding Fig. 7). Like our
Eq. [8]. Kuipers® Eq. [22] is only inaccurate when most of
the signal from an element originates from well below the
surface (~A or more, see Fig. 7).

The failures of the Kuipers model (their Eq. [22]) appar-
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ent in Fig. 8 will also occur when it is extended using their
“sphere model,” since their sphere model only changes
the shape of the catalyst phase (from layers to spheres),
but the support is still treated as flat sheets. If one went a
step further and also treated the support as spheres within
their formalism, this would simply require replacing their
attenuation function I for the support in their Eq. [22] with
the equivalent attenuation function for spherical supports
(their £} evaluated at Ry = 31/2). Since Kuipers et al. (1)
argue that I" and () are nearly equal, one would not expect
this to make much difference. We performed such calcula-
tions, and it does make some difference since I' and () are
not exactly the same. Nevertheless, the errors were just as
large as, and generally larger than, those shown in Fig. 8.

This form of Kuipers’ model does not give the same
equations or intensity ratios as ours since their model im-
plies that the catalyst phase is randomly spread over the
projected area of the support spheres, and not randomly
spread over the actual surface of the support spheres, as
we assume. Since the face of a sphere contributes more to
its projected area than its sides, this means that their model
concentrates catalyst phase more on the face of the support
sphere relative to the sides. This falsely weights the catalyst
phase’s spatial distribution in favor of locations with longer
photoelectron travel lengths through the support. Also,
Kuipers’ model neglects “‘self-attenuation’ by other cata-
lyst spheres of the same layer, while our model does not.
The extent of this self-attenuation is large for high cover-
ages by the catalyst. Indeed, coverages by the catalyst of
greater than 1/2 in Kuipers’ spheres model do not make
physical sense. (Note that their “apparent coverage’ is
greater than 1.0 in this case.)

Since no prior formalisms exist for more complex sam-
ples than the supported monometallic catalysts of the type
discussed above, no comparison between our methods and
other equations for multimetallic catalysts were possible.
Elsewhere, we have demonstrated the utility of the formal-
isms presented here in quantitative interpretation of XPS
spectra from real multiphase bimetallic catalysts (14). The
catalysts analyzed were calcined cobalt/rhodium mixtures
supported on macroporous niobia powder, modeled by 60-
nm-diameter spheres to match its BET area. The structural
model which best fit the bulk composition, XPS, and TPR
data for these catalysts is shown schematically in Fig. 6. It
has bilayer islands (~1-3 nm of Rh oxide on top of ~3-9
nm of Co;0,) covering a small fraction of the surface, with
a submonolayer Co** phase everywhere in between these
islands. By comparison to calculated intensities using Egq.
[8], or full integration, we found that using Eq. [2] assuming
a constant take-off angle of 57.3° was of sufficient accuracy
to allow optimization of the structural parameters for this
model (fraction covered and phase thicknesses). The Rh/
Nb and Co/Nb XPS ratios agreed between the two methods
to <9%. However, the XPS ratio of the two different phases
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of cobalt (Co?*:Co;0,) differed by 7 to 14%, depending
on the Rh loading, between the two methods. This larger
difference occurs because one of the Co phases is buried.
The experimental error in this ratio, however, fell within
these differences, so it was not a real problem in this partic-
ular case (14). In any case, this level of error shows that
even this very approximate method using 57.3° is accept-
able for the initial search of parameter space to find the
right magnitude for initial guesses using the more accurate
methods described above. Therefore, this quick method
should be of general utility when trying to make initial
guesses for structural parameters that match XPS spectra
of catalysts.

The XPS signal from a random sample for a supported
phase which is present as equally sized but arbitrarily
shaped convex particles is determined entirely by their
surface : volume ratio, as was so beautifully shown by Kuip-
ers et al. (1). Therefore, the formulae derived here should
also be rather generally applicable to shapes of catalyst
phase particles other than those treated explicitly here.
Specifically, they should accurately describe arbitrary con-
vex shapes for the supported active phases’ particles, pro-
vided that their real size distribution is narrow. However,
for this to hold true, the partial spherical shell used to
model them must be chosen so that it has their same total
surface to volume ratio (and their same volume). Note
that the total surface area here refers to the sum of the
areas of all the particle surfaces, including the underlying
support interface. Thus, one would get the same XPS sig-
nals from our partial spherical shell model with a catalyst
phase of thickness ¢; covering a fraction f; of the support
as with a model where the catalyst phase is composed of
spheres of radius 31,/2 covering a fraction f;/2 of the support
spheres, or of hemispheres of radius 9¢,/4 covering a frac-
tion of 2f/3 of the support (see (1) for details).

While the above formalisms were derived with XPS in
mind, they can also be used for AES, as long as the penetra-
tion depth of the incident electron beam is much larger
than the inelastic mean free paths of the Auger electrons
(17). Of course, one must substitute the proper AES sensi-
tivity factors (15) in place of the product L;(y)-oy-
Tkg)y- A in the above equations.

The neglect of electron elastic scattering in Eq. [1] could
lead to small errors in our formalisms here, as shown by
Jablonski and Powell (17). When our formalisms are used
to treat AES signals, these errors can be overcome by
using the attenuation length in place of the inelastic mean
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free path (17). Such a straightforward correction is not
possible in XPS (17).
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